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• Review period of 14 months: 
March 2009 – April 2010

• Funded project end: Sept 30, 2010
• ~ 75% complete

• High cost of wafers in dominant 
silicon PV technology

• Low efficiency of thin-film PV
• Non-Si PV may face shortages 

and high prices of key elements 
(e.g. Te, In, Ga) at TW penetration

• Total project funding in review
– DOE: $3862k for 14 months

• Total FY09 Funds:  $3225k
• Total FY10 Funds:  $3395k

Timeline

Budget

Barriers

• Project lead: NREL
• Key collaborations

- Ampulse
- Corning
- Sharp Laboratories of America
- Uni-Solar
- Xunlight
- Other industry (proprietary)
- Oak Ridge National Laboratory
- Stanford University
- Columbia University

Partners

Overview: Film Silicon Ageement
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Challenges, Barriers or Problems

• The PV challenge: TW-scale deployment
– Requires abundant, non-toxic materials
– Requires high-quality materials on low-cost substrates
– Requires 50 to 80 cents/W module cost

• Efficiency of crystal-Si (15%) at thin-film manufacturing costs (<$100/m2)

• The advantages of silicon
– Abundant, non-toxic, well-understood, semiconductor
– Industrial equipment from PV, IC and a-Si TFT industries

• The key mid-term technical challenge for silicon PV
– Eliminate the Si Wafer

• Wafer is ½ the Si module cost today, despite feedstock cost reductions
• Embedded energy content repaid only after 2-year deployment
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Relevance:
Si wafers must be replaced in PV

Add Carbon & 
Energy

Pure
SiHCl3

or
SiH4CO2

Sand Metallurgical
grade Si

Add Heat Energy
(1000 °C)

Feedstock

Add more heat 
energy (1500°C)

Waste ~1/2
in sawing

Use 20X 
more SI than 
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Expensive & energy-intensive wafer production
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Relevance: Why film silicon

Add Carbon & 
Energy

Pure
SiHCl

3

or
SiH4

CO2

Sand Metallurgical
grade Si

Film Si decreases materials and energy costs

Directly deposit
from purest 

precursor at high 
rate

Inexpensive substrate

Film Silicon PV      
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• CSG (Q-Cells) mini-modules:  Jsc=29.3 mA/cm2 from 1.85 µm thick c-Si
– Poor quality, 1-micron grain, recrystallized Si limits efficiency

• Near-term goal: 30 mA/cm2 from 4-µm c-Si
- 5X light trapping

Relevance:  With light-trapping, 
c-Si film can provide needed current for 15% cells
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Overview of Film Silicon Agreement

• Task: Improve 
high deposition-
rate nc-Si

Mid-term: film c-Si for 
wafer replacement

3 Main Tasks
Improved quality of 
epitaxial Si at high-
rate and low T

3 Small Tasks
Inexpensive 
crystalline 
seed layers 

Near-term: 
thin-film

a-Si/nc-Si
New FY09 Task
Devices & models

Goal: increase 
efficiency and 
lower capital costs
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• Address most critical needs for >15%-efficient mid-term film crystal silicon
– Improve high-rate, scalable, hot-wire CVD epitaxy at glass-compatible temperatures
– Improve rapid thermal anneal and hydrogen passivation
– Test epitaxy on most promising crystalline seeds on inexpensive substrates
– Design and fabricate test solar cells to validate epitaxial Si quality
– PC1D and analytic models of devices to understand limiting physics
– Plan light-trapping task to begin in FY11
– Establish firm scientific knowledge for all technologies required

• High-rate nanocrystalline Si for near-term PV use
– High efficiency hot-wire and VHF CVD a-Si:H and nc-Si devices on 6-inch substrates from PDIL tool
– Support of U.S. industry

• Collaborative research with established and startup U.S. companies in film Si PV and new substrates
• Provide amorphous silicon films to university groups for novel nanostructured, plasmonic and other devices

• All research tasks support goals of DOE Film Silicon Roadmap
– Key “Technical Improvement Opportunities” for materials and device development addressed
– Manufacturing equipment and scale left to industrial partners

Objectives and key tasks 
FY09 – FY10
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• p+/p- -layer optimization
fixed 4 nm p+ fixed 3.5 nm p-

10.5% on 0.25 cm2 cell: 

10.5% PECVD thin-film a-Si:H cell in 6-inch PDIL cluster tool

Q.

Q. Wang et al, in preparation
Ag

Asahi U-Type Glass

p--layer

4000Å i-
layer

300Å n-layer

p+-layer

• Establishes quality for 6-inch industrial collaborations
• Key advance is p+/p- double layer

Near-term thin-film Si task
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Substrate

Shutter

W Filament at ~2000 oC  

SiH4

H2

PH3

Heater

NREL Hot-Wire CVD epitaxy
at high rate

• Decomposition to Si, H at wire
– React Si + SiH4 ---> Si2H2 +H2

– Si2H2 deposition radical

• Real-time spectroscopic ellipsometry
– Layer-by-layer monitoring of crystallinity, thickness & 

roughness

• Contolled n- and p-type doping

• Demonstrated 40-micron epitaxy

• High-rate 300 nm/min epitaxy
– Can grow 3 micron PV absorber in 10 minutes
– Increased wire area needed for micron per minute rate

RTSETeplin et al, JAP 2005

Zheng & Gallagher, TSF 2008

Martin et al, TSF 2008

Martin et al, JAP 2010
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Mapped deposition phase space
for thick HWCVD epitaxy

• Curves separate fully mono-hydride surface from surface with DBs
• Steady-state balance between H arrival and desorption

Teplin et al. APL, in press

Epitaxy requires unhydrogenated surface sites

• SAD and high-res TEM 
confirm high-quality epitaxy
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• Developed reliable methods of defect density counting
– E-beam cathodoluminescence and EBIC of recombination-active defects
– Low dislocation density confirmed at small areas by TEM

• 40-µm spacing between defects excellent for ~6 µm-thick absorber layer

Low defect density HWCVD epitaxy 

SEM E-beam induced current (EBIC)

• Example:  10-micron thick solar cell with < 6 x 104 cm-2 defects 

30 µm 30 µm
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• 6.3% efficiency with no light trapping, RTA or hydrogenation
• Dislocation density controls Voc

Epitaxial quality supports Voc of 568 mV 

Alberi et al. APL, 2009

• Silicon heterojunction test devices on ‘dead’ wafer (wafer provides ~1 mA/cm2)
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Ld

Cell thickness < Ld/3 for good collection

2 Ld

Ld limited to half the unpassivated dislocation spacing

Unpassivated dislocations

Analysis of test cells & PC1D models

Alberi et al, APL 2010

• IQE & dislocation measurements reveal quality requirement:
- unpassivated dislocation spacing 6 times absorber thickness
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Impurities:
Film c-Si is far more tolerant than wafer

Diffusion-limited cell (random walk) physics
Alberi et al, APL 2010

Diffusion length, L:

Max impurity level vs thickness, d

Impurity tolerance, Nmax

τ ∼
1

N
L ~ (Dτ)1/2 ~ N-1/2

L > 3d Nmax ~
1

(3d)2

Nmax(3µm)

Nmax(300µm)
~

3002

32
~ 104

Davis et al., IEEE Trans. Electron Devices, 1980

Example: Ni tolerance in c-Si

300 
µm

3 
µm
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Dislocations are caused by O at 
surface and can be controlled

• We are perfecting surface-oxygen reduction methods
– Already reduced dislocation density to 6x104 cm-2 (> 45-µm spacing)

Teplin et al. APL, in press

• T-dependence of dislocation density matches suboxide 
desorption Eact

• SIMS shows dislocation correlation with interface oxygen

Martin et al. APL, in preparation
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• Important seed layer properties
– Large crystalline grains
– Grains oriented coherently

• (100) preferred
– Low-angle grain boundaries

• In-plane orientation of grains
– If foreign, compatible with Si epitaxy
– Few intragrain defects 

Seed layers initiate high-quality 
crystal growth
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Nucleation centers by laser Thermal anneal: nucleation 
centers crystallize and grow 
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NREL seed layer project:
Sub-threshold laser pretreat array

• Laser-pretreat amorphous silicon with sparse array of nucleation centers
- Below threshhold for producing deleterious multicrystalline spots

• FY09: Discovered laser treatment regime 
which speeds nucleation by factor of 7X

Next: Pretreat with sub-threshhold spot array
to obtain large grains

Dabney et al. APL, 2009
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External collaborations for 
seed layers

Electron back-scattered diffraction (EBSD)
van der Wilt et al, MRS Spring A, 2008

Partner Type Seed Si epi? PV cell
ORNL/Ampulse Nat. Lab 

/Startup
Biaxial foreign on 
metal foil

Yes Yes

Corning Industry Layer Transfer Yes Yes

Sharp Industry Layer Transfer Yes Yes

3 different partners Industry Proprietary Yes (on first 1 of 3)

Stanford University Biaxial foreign on 
glass

Awaiting suitable 
sample

Columbia University Uniaxial laser Si 
on glass

In progress

X-ray diffraction (111) pole figures
Heteroepitaxy with 45° in-plane rotation
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463 mV solar cell on display glass  

• Layer transfer Si seed on $26/m2 Eagle glass + NREL HWCVD epitaxy
• 4.8% efficient without hydrogenation, RTP or light-trapping

Corning Eagle glass 

Collaboration with E. Mozdy and T.K. Chuang, Corning

Late news:  Proof-of-concept epitaxial solar cell



21 | Solar Energy Technologies Program eere.energy.govNREL – Branz – May 2010

Future Plans

• Implement improved low- defect density epitaxy in PV cells on glass
– Raise layer-transfer ‘ideal seed’ voltage to > 600 mV
– Validate PC1D models with thickness series
– Apply wider range of RTP and hydrogenation conditions

• Evaluate quality of epitaxy and PV cells on newly-acquired seeds
– Foreign templates
– Laser-crystallized seeds
– Proprietary industry seeds

• Down-select by September the least promising of NREL’s 3 seed layer approaches 
– elimination of microwave anneal task is likely

• Planned FY11 Agreement changes
– Epitaxy at high quality at higher rate and lower temperature
– Continue developing only the most promising of NREL seed layers
– Initiate formal light-trapping task to accelerate work and raise current density
– Initiate exploratory task for proprietary alternate approach to wafer replacement

• FY13 goal is 15% cell on glass or metal foil
– Challenge is to develop and integrate several unproven but critical techologies
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Summary
• Film silicon: Wafer silicon efficiency in a thin-film cost structure

– Avoids high $$ and energy costs of wafers 
– Abundant, non-toxic silicon for TW-scale PV

• > 15% achievable in 2-10 micron c-Si films 

– Seed layer & epitaxy for good crystal quality
– Need spacing between dislocations at least 6 times thickness

• HW epitaxy on c-Si at display-glass-compatible T 

– 40-µm defect spacing (6 x 104 cm-2 dislocations )
– Scalable 300 nm/min with path to micron per minute 

• Proof-of-concept HWCVD epitaxial solar cells designed, fabricated, measured and modeled 

– On (dead) wafer with 568 mV
– On display glass with 463 mV

• All the key barriers identified and can be surmounted

– better epitaxy at higher rates, less expensive seeds, improved contacting, and good 
light-trapping
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• Kirstin Alberi
• Carolyn Beall
• Joe Berry
• Matt Dabney
• Anna Duda
• Harvey Guthrie
• Falah Hasoon
• Kim Jones
• Eugene Iwaniczko
• Harv Mahan

NREL Participants – Thank you

• Ina Martin
• Bill Nemeth
• Bob Reedy
• Manuel Romero
• Maxim Shub
• Paul Stradins
• Charles Teplin
• Qi Wang
• Yueqin Xu
• David Young
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